Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement.

نویسندگان

  • L M Rice
  • A T Brünger
چکیده

A reduced variable conformational sampling strategy for macromolecules based on molecular dynamics in torsion angle space is evaluated using crystallographic refinement as a prototypical search problem. Bae and Haug's algorithm for constrained dynamics [Bae, D.S., Haug, E.J. A recursive formulation for constrained mechanical system dynamics. Mech. Struct. Mach. 15:359-382, 1987], originally developed for robotics, was used. Their formulation solves the equations of motion exactly for arbitrary holonomic constraints, and hence differs from commonly used approximation algorithms. It uses gradients calculated in Cartesian coordinates, and thus also differs from internal coordinate formulations. Molecular dynamics can be carried out at significantly higher temperatures due to the elimination of the high frequency bond and angle vibrations. The sampling strategy presented here combines high temperature torsion angle dynamics with repeated trajectories using different initial velocities. The best solutions can be identified by the free R value, or the R value if experimental phase information is appropriately included in the refinement. Applications to crystallographic refinement. Applications to crystallographic refinement show a significantly increased radius of convergence over conventional techniques. For a test system with diffraction data to 2 A resolution, slow-cooling protocols fail to converge if the backbone atom root mean square (rms) coordinate deviation from the crystal structure is greater than 1.25 A, but torsion angle refinement can correct backbone atom rms coordinate deviations up to approximately 1.7 A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring structural variability in X-ray crystallographic models using protein local optimization by torsion-angle sampling.

Modeling structural variability is critical for understanding protein function and for modeling reliable targets for in silico docking experiments. Because of the time-intensive nature of manual X-ray crystallographic refinement, automated refinement methods that thoroughly explore conformational space are essential for the systematic construction of structurally variable models. Using five pro...

متن کامل

Application of torsion angle molecular dynamics for efficient sampling of protein conformations

We investigate the application of torsion angle molecular dynamics (TAMD) to augment conformational sampling of peptides and proteins. Interesting conformational changes in proteins mainly involve torsional degrees of freedom. Carrying out molecular dynamics in torsion space does not only explicitly sample the most relevant degrees of freedom, but also allows larger integration time steps with ...

متن کامل

Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases.

A new conformational database potential involving dihedral angle relationships in databases of high-resolution highly refined protein crystal structures is presented as a method for improving the quality of structures generated from NMR data. The rationale for this procedure is based on the observation that uncertainties in the description of the nonbonded contacts present a key limiting factor...

متن کامل

Torsion Angle Refinement and Dynamics as a Tool to Aid Crystallographic Structure Determination

Crystallographic methods using experimental diffraction data have produced about 85% of the macromolecular structures in the Protein Data Bank. Before deposition, nearly all crystal structures are refined with gradient-driven optimization techniques. Refinement is typically performed with iterative local optimization methods. A common problem is convergence to local minima. Reparameterization o...

متن کامل

Prediction of Protein Loop Conformations using the AGBNP Implicit Solvent Model and Torsion Angle Sampling.

The OPLS-AA all-atom force field and the Analytical Generalized Born plus Non-Polar (AGBNP) implicit solvent model, in conjunction with torsion angle conformational search protocols based on the Protein Local Optimization Program (PLOP), are shown to be effective in predicting the native conformations of 57 9-residue and 35 13-residue loops of a diverse series of proteins with low sequence iden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 1994